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jNOTATION
aj Sonic velocity in the jet, ft/sec (m/s)

Cd  Sectional profile drag coefficient from momentum loss in wake,
corrected for additional mass efflux of the jet

Cdrake  Sectional profile drag coefficient as measured by rake, uncorrected

C I Sectional lift coefficient

C i Maximum sectional lift coefficient obtainable within test C
"max limitations

C Unblown Lift Coefficient

C Pitching moment coefficient about the half-chord

C p Pressure coefficient, (P -P.)/q.Cp

C* C for local sonic flow
p p

C Momentum coefficient, iVj/(qS)

c Chord length, ft (m)

h Slot height, in. (cm)

Sectional lift, lb (kg)

M Critical Mach number
crit

M Mach number in the jet

M Free-stream Mach number

m Mass efflux, slugs/sec

P£ Local static pressure on the model, lb/ft
2 (N/m )

P t Duct (plenum) total pressure, lb/ft
2 (N/m )

2 2
Pt Free-stream total pressure, lb/ft (N/im)

P Free-stream static pressure, lb/ft
2 (N/m2)

2 2q. Free-stream dynamic pressure, lb/ft (N/m)

R Universal gas constant

R Reynolds number based on chord
e

S Model planform area, ft
2 (m )

v
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i t * I

Tj Jet static temperature, OR

Tt Duct (plenum) total temperature, OR

t Airfoil thickness, ft (m)

V Jet velocity, ft/sec (m/s)

V Free-stream velocity, ft/sec (m/s)

x Chordwise distance from leading edge, ft (m)

x Chordwise distance of the slot from leading edge, ft (m)

x/c Dimensionless chordwise position

CGeometric angle of attack, deg

y Ratio of specific heats
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ABSTRACT

A two-dimensional circulation control (CC) airfoil model
was tested in the 7- by 10-foot transonic wind tunnel at the
David W. Taylor Naval Ship R&D Center. Test conditions
covered a range of free-stream Mach numbers (0.3 to 0.8),
angles of attack (-10 to +6 deg), and blown jet pressure

- ratios (0 to 3.0). These data provided the first information
on the influence of angle of attack on CC airfoil drag and

'I -lift augmentation at transonic speeds. The tested CC airfoil
NCCR 1610-8054S was quasi-elliptical in shape, having a
16-percent thickness to chord ratio, with 1-percent maximum
camber occuring at 70-percent chord. The program objectives
were to achieve improved performance at transonic speeds
while maintaining the characteristically high-lift augmenta-
tion at low subsonic operation. These objectives required
nonsymmetrical thickness and camber distributions for the
airfoil. Performance goals were qualitatively substantiated
by the transonic test data. At 2-deg angle of attack, a
maximum lift coefficient of 2.1 was obtained at M = 0.3;

while for M = 0.6 at the same angle, the maximum lift

coefficient was 0.76. As a high-lift device the airfoil was
very effective at and below M = 0.4. As a means of direct

lift control the airfoil remained effective up through
M = 0.7.

ADMINISTRATIVE INFORMATION

The work reported herein was funded under Naval Air Systems Command (AIR-320D)

Program Element 63203N, Task Area W0578001, and David W. Taylor Naval Ship R&D

Center (DTNSRDC) Work Unit 1-1619-200. This effort was part of an ongoing task to

expand the data base for circulation control airfoil two-dimensional characteristics.

INTRODUCTION

The circulation control (CC) airfoil development program was initiated under

the CC Rotor (CCR) Project in fiscal year 1976. The objectives of this ongoing

task were to expand the two-dimensional data base for both subsonic and transonic

data and to pursue the design and test evaluation of new CC airfoil contours for

* specific performance improvements. An overview of this work giving program

background and design rationale for the airfoils tested was reported by Wilkerson.

Subsonic wind tunnel tests, documented by Abramson,2 '3 have significantly extended

*! " A complete listing of references is given on page 11.
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the CC airfoil data base. Performance characteristics of lift, drag, and pitching

moment were established for several new, but related, airfoil geometries. Also,

some effects of trailing edge geometry were explored, including a wide range of

slot height-to-chord ratios.

The two most significant new profiles were designed analytically without

restrictions as to thickness or camber distribution. The objective for each of the

two designs was to maintain high levels of augmentation (AC /AC ) at low subsonic

speeds while increasing the critical Mach number values. Both designs achieved
1

these goals analytically. One of the two airfoil designs, designated NCCR 1610-

8054S, was chosen for subsequent transonic wind tunnel evaluation, and the test

results are reported herein.

The CC airfoil NCCR 1610-8054S was tested in the 7- by 10-Foot transonic wind

tunnel at DTNSRDC. The test was conducted over a range of Mach numbers (0.3 to 0.8),

angle of attack (-10 to +6 deg), and blown jet pressure ratios (0.0 to 3.0). This

was the first transonic test providing data to evaluate the augmentation and drag

divergence variation with angle of attack.

The airfoil profile (designed by E.O. Rogers*) is nominally a 16-percent-

thick airfoil having a 1-percent camber line with maximum offset at the 70-percent

chord location. The camber line was designed with zero slope at the leading edge.

This feature minimizes lower surface leading edge suction peaks at negative angles

of attack, which are operationally typical on CC rotor applications. Thickness

distribution is that of a modified ellipse. The leading edge radius is reduced

from a pure elliptical contour by using a power function redistribution of the

ellipse coordinates, which also ensures continuity of surface derivatives. The

trailing edge Coanda surface uses a spiral contour. The local surface radius-to-

chord ratio negotiates from r/c = 0.022 just aft of the slot to a maximum value of

r/c = 0.040 as it becomes tangent with the lower surface. Slot location is at

xs/c = 0.980, which is slightly further aft than on previous CC airfoil designs.

Figure I shows the airfoil contour and camber line.

Reported informally by Ernest 0. Rogers, ("Design of a Circulation Control
Airfoil for Application to Helicopter Rotors," DTNSRDC/TM-16-76/33, November 1975).
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t iMODEL AND TEST APPARATUS

MODEL

The NCCR 1610-8054S airfoil shape was developed to meet the high-speed, high

Reynolds number flow conditions encountered near the tip of a helicopter rotor.

The airfoil model was constructed at full size for an 11,000-lb (5000-kg) helicopter

to avoid the uncertainty of scale effects. Thus, the chord dimension of the airfoil

was 18 in. (47.72 cm).

The model, designed by Clark,4 was fabricated entirely of 7075-T6 aluminum.

A single material was used for the airfoil model's four main pieces to minimize the

possibility of model warpage due to temperature variation during the test. High

strength aluminum was chosen because of its density, strength, and machinability.

The resulting model was over 12 ft (3.66 m) long with about 10.1 ft (3.05 m)

machined to the airfoil contour, Table 1.

The airfoil was composed of an upper section, a lower section, a trailing edge,

and a knife edge; see Figure 2. The upper and lower sections form the leading edge

and main structure of the airfoil. The knife edge and trailing edge were designed

as separate components to allow for easy modifications of this area of the airfoil

contour. (This critical area gives the airfoil its unique circulation control

properties.) Air enters the airfoil through ducts at either end of the airfoil and

exits the airfoil through the slot formed by the trailing edge and the knife edge.

A design feature of the airfoil model was variable slot height. For this experiment,

slot height was statically set at 0.030 in. (0.0762 cm).

In order to gather data, the airfoil model was pressure tapped. The primary

pressure taps were located at the midspan. Additional pressure taps were placed at

other spanwise locations to verify the two-dimensionality of the flow. Pressure

tap locations are listed in Table 1.

TEST APPARATUS

The wind tunnel evaluation was carried out in the 7- by 10-foot transonic
5wind tunnel at DTNSRDC. The facility is a closed-loop design capable of Mach

numbers up to 1.17. It is possible to simulate a variety of atmospheric pressure

conditions by running the tunnel evacuated, pressurized, or with settling chamber

or test section vented. For this experiment the settling chamber was vented to

the atmosphere. The net result of conducting the experiment with the settling

chamber vented was that Reynolds number did not vary linearly with Mach number, as

3I



would be expected for level flight conditions. In effect, altitude increased with

Mach number. The actual Reynolds number range during the experiment was from

3.02 x 106 to 5.93 x 106 for Mach numbers from 0.3 to 0.8, rather than Reynolds

6 8.1x16numbers from 3.19 x 10 to 8.51 x 10 for constant altitude sea level flight.

The two-dimensional airfoil model was mounted horizontally in the wind tunnel

as shown in Figure 3. The model was supported by a rotatable platform at each end

and by two struts which were pinned through the lower surface of the airfoil. This

support arrangement made it possible to remotely vary the angle of attack of the

model.

Air for the trailing edge blowing was supplied to the airfoil through ducts

* attached (outside the test section) to either end of the model as shown in

Figure 4. These ducts came from a common supply line located beneath the test

section in the settling chamber. Control of the duct airflow was accomplished

remotely using a pneumatically actuated valve.

During the experiment, data were taken for surface pressure, duct pressure and

temperature, wake rake static and total pressures, and mass flow measurement. The

airfoil surface pressures were recorded using two multi-ganged Scani-valves which

were referenced to the wind tunnel free-stream static pressure. The surface

pressure data were integrated in the data reduction process to calculate the lift

force and pitching moment on the airfoil. Drag force was computed from pressure

data obtained with the wake rake. The wake rake consisted of five total pressure

probes and one static pressure probe mounted on a strut which vertically traversed

the wake behind the model at the midspan station. Each probe was connected to a

pressure transducer, and the wake data were recorded simultaneously with the

surface pressure data.

Mass flow for the Coanda (trailing edge) blowing was computed from pressure

and temperature data taken on standard venturi meters mounted in the supply lines

to the airfoil duct. Coanda jet velocity was computed from pressure and temperature

data measured at three locations within the blade duct.

DATA REDUCTION

Measured surface pressures were converted into local C values and then
p

integrated to obtain airfoil lift and pitching moment coefficients about the half-

chord point. Drag coefficients were obtained by integration of the wake rake

measured pressures according to the method of Betz and Jones. 6 Final drag

4



coefficients include the added term in V /q S to account for the momentum increase

from the Coanda jet.

The momentum coefficient was calculated from the measured model jet mass flow,

and from the jet velocity V. where

_:1
= /YR~ M 2/(l + Y'l If2)

and y-i

M.2 2 -i

i - 
-

These equations assume a pure isentropic expansion from model duct total pressure

to free-stream static pressure. The above relations were applied for all pressure

ratios, thus yielding jet Mach numbers greater than 1.0 for high pressure ratios.

Test section Mach number and dynamic pressure were calculated using the

relations:

1

M 2 2 ]

= (1/2) y P 
2

DATA PRESENTATION

The variation of jet Mach number M. versus the jet momentum coefficient C is3 12
shown in Figure 5 for each of the test values of free-stream Mach number. These

lines are the locus of points plotted from the reduced data and, thus, reflect such

influences as slot expansion with increasing duct pressure through the measured

mass flow term in C . The curves apply directly to this model and test con-

figuration. Generally, the relationship will change for different slot height

settings, or differences in slot expansion due to pressure.

INTEGRATED AIRFOIL COEFFICIENTS

The unblown characteristics of the airfoil are shown in Figures 6, 7, and

8 for different Mach number and angles of attack. Two trends of the lift curves

are: (1) the drop in Ci with increasing Mach number for constant angle of attack,

5



and (2) the consistently low magnitude of the lift curve slope (aC /aa) for the

unblown airfoil.

Figure 9 through 11 show airfoil characteristics versus the jet momentum

coefficient. Each figure is for a given, constant Mach number but includes curves

for several different angles of attack. Figure 9 shows that lift developed from

blowing drops off as the C exceeds a value corresponding to choked jet conditions.

This closely corresponds to when Coanda surface pressures reach C*. However, this
p

is not always the case. A clear exception is shown in Figure 9d and 9e, for

M. = 0.6 and 0.7, where the C continues to increase with C well past the choked

jet condition. Other experiments have also shown that CC airfoil operation may

continue well beyond the point of a sonic jet.
7 Zero augmentation in the vicinity

of choked jet flow is most likely attributable to the design of the trailing edge

region. Additional transonic test data on other profiles are needed to identify

the causative factors.

Drag and pitching moment data corresponding to the Figure 9 lift data are

shown in Figures 10 and 11. Drag characteristics show a tendency to rise with

increasing lift and then drop off after passing C9 . This behavior is similar to

max
a standard lift-drag polar. Three example lift-drag polars for the NCCR 1610-8054S

airfoil are shown in Figure 12 along with two NACA airfoil lift-drag polars from

Abbott and von Doenhoff.8 The CC airfoil at M = 0.3 has higher C capability
max

with the attendant extension in profile drag. Conversely, the CC airfoil develops

a very good Cdmin = 0.004 at C9 = 0.55 for a = -4 deg. Similar (and lower) minimum

drag values were achieved up to a = +2 deg.

Pitching moment behavior follows the C. , becoming more negative as greater

suction develops on the airfoil aft upper surface. A comparison of the data in

Figures 9 and 11 shows that pitching moment stall occurs near C . Closer
max

comparison reveals that moment stall slightly precedes lift stall for angles of

attack greater than -2 deg. Overall, the behavior is as expected; pitching moment

at half-chord is substantially negative for negative angle of attack, and becomes

more negative as jet momentum is increased.

LIFT DATA CROSS PLOTS

The variation of C9 versus C , as presented in Figure 9, has been cross plotted

to highlight this area of interest. The cross plots (Figure 13) provide a different

6



perspective than that shown in Figure 9 and point out the important influence of

free-stream Mach number on the CC airfoil lift capabilities.

Lift variation versus the jet momentum is presented in Figure 13 for different

Mach numbers at approximately constant angle of attack. As shown in Figure 5, the

C range is greatly reduced for higher M (given a range of M) Thus, the curves
of Figure 13 show much lower C values for higher M , which is a result of the

definition of C . However, the absolute value of C is much less at higher M.
max

Currently, considerable effort is underway to define the nature of this CE and
max

to identify the airfoil parameters which limit it. Although such an evaluation was

not undertaken in the work presented, it was observed that the C. resembles a

2 max
line of constant AC M 2 . This corresponds to a condition of constant A lift

max
force available from jet augmentation over the free-stream Mach range.

Maximum values of lift due to blowing (AC-  C - C ) are plotted versus
max o

free-stream Mach number for several angles of attack in Figure 14. These curves

show the characteristic drop in maximum augmented lift as Mach number increases.

Also noticeable is the influence of angle of attack on the maximum ACL- an

important characteristic since the CC airfoils usually operate at negative angles

in a rotor application; see Reference 1 for typical operational ranges. The

curves in Figure 14 show the approximate upper limit of lift capability as a

function of both Mach number and geometric angle of attack.

SURFACE PRESSURE COEFFICIENTS

The distribution of surface pressure coefficient Cp shows some flow

characteristics of the airfoil. Figures 15 and 16 are included to exemplify the

changes in airfoil C distribution as Mach number and C vary. Figures 15a and 15bP 1'

show C distribution as C is increased. Figure 15a shows the powerful influenceP p

of the blowing jet dramatically altering the Cp distribution at M = 0.30, thereby

directly controlling C. Similar influence is observed at M = 0.5 in Figure 15b,

but diminishes as the wall jet approaches C*.
P

Figures 16a and 16b show Cp distributions as M, is increased for fixed blowing

and angle of attack. Figure 16a shows the unblown airfoil (Mj = 0, Cu = 0) at

constant a - -2 deg. This corresponds to the lift variation shown in Figure 6.

Figure 16b shows the C distributions for constant jet Mach number M = 0.89 at

p.

7



* 11

a -4 deg. The value of M is high enough to exhibit augmented characteristicsMj
but is below any stall region. The value was chosen to be representative of

typical CC airfoil C distributions.
p

CONCLUDING REMARKS

The NCCR 1610-8054S airfoil profile exhibited characteristics which satisfied

the CC airfoil development program objectives of achieving improved performance at

transonic speeds while maintaining high-lift augmentation at low subsonic

speeds.

1. High-lift capability was demonstrated at low subsonic speeds, while

extending the Mach number range for effective direct lift control up to M = 0.7.

These combined attributes were not previously available from any single CC airfoil.

2. Maximum lift coefficient at zero-deg angle of attack varies from 2.0 at

M = 0.3 to 0.35 at M = 0.7. The variation resembles a l/M.2 curve, which

corresponds to a constant lift force versus M.O. Nominally, the variation would

appear to be a desirable trait, as it represents a nearly constant aerodynamic force

capability over a broad Mach range. This further suggests nearly constant aerodyna-

mic lift sensitivity to the percent of blowing control used.

3. The test data have established previously unknown influences of angle of

attack on the maximum obtainable C . Most significant is the expected affect of

1Ift curve slope (aCX/3a) for the unblown airfoil. Negative angles of attack pro-

duce a negative bias on the C value, especially at higher subsonic M.. However,
0

angle of attack also influences the maximum available augmented lift

(ACe = CZ - Cf ) for all M values tested. More negative angles of attack yield
max 0

noticably less AC from the tested CC profile.

4. At low subsonic Mach numbers, the profile drag tends to follow a rather

conventional lift-drag polar, which compares favorably to that of a selected NACA

airfoil section. Values of Cdmin change according to M.., a, and C . At Moo = 0.3,

minimum drag coefficients of 0.0032 to 0.0051 were measured for the Ct range of

0.45 to 0.60. Values of Cd  generally increased with increasing M.
min

5. Pitching moment coefficients were resolved about the 50-percent chord.

The variation was as expected: C decreased as angle of attack decreased, and
m50

became more negative as jet momentum was increased. At low M., C has a greater

8
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influence on C than a; while at higher M, a has the greater influence.mo
i 5 0

Overall, the transonic test data presented are more comprehensive than any

previous results on CC airfoils with respect to the significance of angle of attack

on airfoil performance. Nevertheless, the experimental nature of the spiral

trailing edge geometry should be recognized. While this geometry has provided good

augmentation, it is far from optimum in terms of profile drag (jet thrust recovery).

Further refinements of the bluff trailing edge of CC airfoils should lead to higher

Merit, improved drag, and even greater lift capability.
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Figure 6 -Lift Variation for the Unbiown Airfoil
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Figure 6 (Continued)
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Figure 7 -Drag Variation for the Unbiown Airfoil
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Figure 8 -Pitching Moment Variation for the Unbiown Airfoil
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Figure 8 (Continued)
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Figure 9 -Lift Variation with Jet Momentum for Constant Mat-h Number -
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Figure 9 (Continued)
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*Figure 9 (Continued)
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Figure 9 '(Continued)
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CDFigure 9 (Continued)
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Figure 10 - Drag Variation with Jet Momentum for Constant Mach Number
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Figure 10 (Continued)
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Figure 10 (Continued)
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*Figure 10 (Continued)
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Figure 10 (Continued)
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Figure 10 (Continued)

C) K j >1 ALPHA 2.2 (D
C? 0.0 A

-2.3 +
-4.3 X

C-,

U-
U-

C)

10.0040 .0080 .0120 .0160 .0200 .0240 .0280

MOMENTUM COEFFICIENT, CM

Figure 10f - Mach Number =0.8

37



Figure 11 -Pitching Moment Variation with Jet Momentum f or Constant Mach Number
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Figure 11 (Continued)
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Figure 11 (Continued)
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Figure 11 (Continued)
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Figure 11 (Contin~ued)
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Figure 13 -Lift Variation with Jet Momentum for Constant Angle of Attack
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Figure 13 (Continued)
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2 Figure 13 (Continued) I
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Figure 13 (Continued)

2

M. 0.3

-i

C-,
U

U-

I.0-5

0.7

-0.0 0.01 0.02 0.03 0.04 0.05 0.06

MOMENTUM COEFFICIENT, I

Figure 13d -Angle of Attack z-6 Degrees

48



7

ALPHA -0 2.0

0 0.0
2.0 -.

A-4.0

A 6.

C3~ NOTE: SYMBOLS WERE
CALCULATED FROM DATA

E BUT MAY NOT CORRESPOND
c3 Q TO A SPECIFIC DATA POINT.

LU ~A Cl [0.794 (-Moo) -0.015 1aI/Mx,

U-- 0
LU C) -4. 0

-6.0

o 1.0

.

0.0
0.0 0.2 0.4 0.6 0.8 1.0

MACH NUMBER

Figure 14 -Peak Augmented Lift Variation with Freestream Mach Number

49



Figure 15 -Pressure Distribution Variation with Jet Momentum Coefficient
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Figure 15 (Continued)
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Figure 16 - Pressure Distribution Variation with Mach Number
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Figure 16 (Continued)
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TABLE 1I NONDIMENSIONAL AIRFOIL SURFACE COORDINATES AND[
PRESSURE TAP LOCATIONS

Chord- Thick- Upper Surface
wise ness

Location Location Spanwise Tap Locations (in.)

X/c Z/c -5 -4 -1 0a +12 +24 +36 +48 +57

0.00 0.00 x
0.49 1.03 x

*1.26 1.68 x
2.48 2.39 x
3.76 2.96 x
5.04 3.43 x
7.53 4.21 x

-10.08 4.86 x x x xx
12.59 5.47 x
15.08 5.88 x
20.10 6.72 x
25.19 7.33 x
31.50 8.03 x

*37.78 8.44 x
44.10 8.78 x x x x x x x x x
50.40 8.92 x
56.70 8.91 x
63.10 8.72 x
69.30 8.44 x
74.40 8.06 x
79.50 7.50 x x x x x x x x x
84.10 6.77 x
88.30 6.05 x
91.69 5.25 x
95.00 4.23 x
97.60 3.16 x x x x x x x x x
99.40 2.11 xt

100.06 0.49 x
100.00 0.00 x x x x x x x x x

x - Pressure tap
a -Model mid-span location
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TABLE 1 (CONTINUED)

Chord- Thick- Lover Surface
wise ness

Location Location Spanwise Tap Locations (in.)

(Z)Z/ -57 -48 -12 0 a 12 +24 +36 +48 +57

0.00 0.00 x
0.51 -1.01 x
1.28 -1.63 x
2.51 -2.31 x
3.79 -2.85 x
5.07 -3.29 x
7.57 -4.01 x
10.13 -4.57 x x x x x x x x x
12.64 -4.98 x
15.14 -5.43 x
20.00 -6.00 x
25.20 -6.44 x
31.60 -6.83 x
37.89 -7.14 x
44.20 -7.25 x x x x x x x x x
50.50 -7.24 x
56.85 -7.12 x
63.18 -6.83 x
69.40 -6.50 x
74.50 -6.13 x
79.50 -5.61 x
84.20 -5.31 x
88.40 -4.61 x
91.70 -4.02 x
95.50 -3.25 x
97.90 -2.39
98.80 -1.77 x

99.95 -0.16 x
100.00 0.00 x x x x x x X x X

x - Pressure tap
a - Model mid-span location
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